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LETTER TO THE EDITOR 

New coherent states of the Lie superalgebra osp (1/2, R) 

LerMan Kuangtt and Xin Chent 
t Theoretical Physics Division, Nankai Institute of Mathematics, Timjii 300071, People’s 
Republic of Chinn 
$ D e p m t  of Physics and Jnslitute of Physics, H u m  Normal University, Hunan 410006, 
People’s Republic of China 

Received 14 December 1993 

Abstract. A new kind of coherent states (css) for Lie superalgebra osp(l/2, R) are intmduced. 
Some proplies of these states are discussed. It is shown that they can encompass the Glauber 
css, su(l.1) css and squeezed states within B common formalism. The O-algebra differentid 
opentor realization of the osp(l/2, R) generators on the (ss and their diagonal projectors is 
comcted .  

It is well known that coherent states (css) have been one of the most important elements 
in quantum physics since its early beginning. They have been applied to almost every area 
of physics and mathematical physics [l]. In the past few years, css for Lie superalgebras 
[2-5] have been introduced. In particular, the authors in [2,3] discussed in detail css of 
the Lie superalgebra osp(1/2, R) which is one of the most important and the simplest Lie 
superalgebras. They introduced osp(l/2, R) a s  by using Perelomov’s definition of css 
for arbitrary groups [6]. The css defined in this way have properties of being minimum 
uncertainty states in the sense that they minimize the dispersion of the quadratic Casimir 
operator of the algebra. The purpose of this letter is to present a new kind of css for the 
superalgebra osp(1/2, R) and to construct a D-algebra differential operator realization of 
the osp(l/2, R )  generators on the css and their diagonal projectors. 

The Lie superalgebra osp(l/2, R) has five generators whose commutation and 
anticommutation relations are given by the following: 

[KO, K*] = -fK* [K+, K-] = -2Ko (1) 

[KO, Fd = *$F* [Ki, F+1 = 0 tK*, F+l = (2) 

{F+,  Fi) = K+ [F+, F-)= KO (3) 

which contains a subalgebra su(1,I) spanned by K* and KO as its even part. The Casimir 
operator of the superalgebra is 

(4) c, = K,2 - $K+K- + K-K+) + i (F+F-  - F-F+). 

The osp(ll2, R) generators admit the following boson realization: 

(3 

(6) 
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K - I 12 K- = l a2  + - i a  2 

+ - 

KO = ;(uta+ i )  I 

F - ’  F - = i a  I 
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where La, at] = 1,a and at are the annihilation and creation operators of a boson. 
Making use of (5) and (6), one can obtain a number representation of the superalgebra: 

Ktln) =;J(n+I)(n+2)ln+2) K-ln)= ; & F i l n - 2 )  (7) 

Koln) = f(n + $)In) F+ln) = i m l n  + 1) F-In) = ;&In - 1). 
(8) 

For convenience, corresponding to even and odd parts of the osp(l/2, R) algebra we 
Erst introduce the following two operators: 

SV) = exp(BK+ - B*K-) D(a) exp(aF+ - a*F-) (9) 

D(a)S(B) = S(@)D(acoshr +a*e'*sinhr) B =rei8. (10) 

which satisfy the relation, 

It can be shown that the operators D(a) and S(B) act as a displacement operator and a 
rotation operator for the odd part of the superalgebra, respectively, 

The actions of D(a) and SV) on generators K- and K+ are given by 

We now define as of the osp(l/2, R) algebra as 

lap) = s(BP(a)lO). (15) 

Substituting (9) into (15) and using (7) and (8). one can obtain an explicit expression of 
these states in the number representation, 

m 
= c(n! coshr)-'/' 

n=a 

x exp --(Ial' -azei8 tanhr)] . H. [:(ei* ~inhr)-'~'] In). (16) 

From the definition (15) it can be seen that these css are normalized, i.e., (aBlaj3) = 1, 
[ :  

but not orthogonal to each other. They have the following orthogonality relation: 

(a'B'laB) = A'''(B, B')expI-Q(laI' + la'l') + $A(B, B')[B(B. 8 ' ) ~ '  
+ 2aa'* + B*@, B')a"]) (17) 
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with 

A(@,@’) = (coshrcoshr’ - sinhrsinhr’)-’ (18) 

E @ , @ ‘ )  =e-ie sinhrcoshr’-e-’‘‘coshrsinhr’. (19) 

In the derivation of (17) we have used 

As is well known, the core of CSs is their completeness. It can be proved that these 
states defined in (15) form an overcomplete Hilbert space with the following completeness 
relation, 

m 
~ d z ~ d z @ ~ ( ~ . @ ) l ~ @ ) ( o L B I  =xln)(nl = I  (21) 

“=O 

where the weight function ~ ( a ! ,  @) is given by 

(22) 
1 

O,@) = - $ R e @ ) W w 3 .  

Therefore these states defined in (15) satisfy the basic requirements [l] (i.e., continuity and 
overcompleteness) as css, they can be called osp(ll2, R) a s .  

From (9) and (15), using (7) and (8) one can see that when @ = 0, the osp(l/2, R) a s  
reduce to the well known Glauber a s  [7], when a! = 0, they reduce to as of the su(1,l) 
algebra (corresponding to k = 1/2 and 1/4 representations) [8]. Essentially, squeezed states 
in quantum optics [9] is the osp(l/2. R )  css. Therefore, the osp(l/2, R )  can encompass 
the Glauber CSS, su(1,l) css and squeezed states within a common formalism. 

It is obvious that the osp( 1/2, R) Css defined in this paper are quite different h m  those 
as in [3,4]. The former contains two complex parameters a! and j3 without Grassmann 
variables while the latter contains either a complex variable or a Grassmann variable. 
On the other hand, the latter has the properly of being the minimum uncertainty states 
in the sense that they minimize the dispersion of the quadratic Casimir operator. It 
can be shown that the css  defined in (15) are not eigenstates of the linearized Casimir 
operator of the osp(l/2, R) algebra, g i j ( X i ) X j ,  where g i j  is the CartawKilling menic 
tensor and Xi  denotes the osp(ll2, R) generators; they cannot minimize the dispersion 
of the quadratic Casimir operator, ACz = g ” ( X j X j )  - g i j ( X i ) X j ,  so that they are not 
minimum uncertainty states. However, it can be easily checked that they are eigenstates of 
the operator coshrF- + sinhrF+, 

(coshrF- +sinhrF+la!,S) = 2(orcoshr +a!*eiesinhr)la!@). (23) 

It is well known that the D-algebras [lo] for the css and the diagonal CS projectors are 
very useful for the laser theory [Il l  and the study of quantum spin syztems [12,13]. 

The D-algebra of an osp(l/2, R )  generator A for as (15) can be defined as 

Ala!@) D‘(A)la!@) (a!@IA E Db(A)(a!@I D‘(A) = [D6(A)]* (24) 
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and the D-algebra on the cs projector l-ap)(q¶I can be defined as 

Al-aP)(CUBI = D'(A)l-aP)(CUBI lols)(olsIA = D~(A)lW(orBI (25) 

where we have Dr(A) = ( D i ( A ) y .  A theorem for the D-algebras can be found as follows: 

ABlap)  = Dk(A)Dk(B)l-aP) ABl-aP) = D'(A)D'(B)IaP). (26) 

It follows from (9) and (15) that 

S(B)F-D(-a)lO) = -0rlaP) 1 

With the help of (1 1) and (12). the right-hand side of (27) can also be expressed as 

S(P)F+D(a)lO) = (: -a* + a >  lap). (27) 4 

S(p)F-D(or)lO) = (coshrF- -e'' sinhrF+laP) 

S(p)F+D(or)lO) = (coshrF+ - e'' sinhrF-lap). 

(28) 

(29) 

By using (25H27), one can get 

(31) 

Then we obtain the ket D-algebras of generators F+ and F- as follows: 

(33) 

Similarly, one can obtain ket D-algebras of other osp(l/2, R) generators: 

The bra D-algebras can be given by the conjugation relation Db(A)  = [Dk(A)l*.  
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It can be shown that these D operators of the osp(l/2, R) generators in the cs space 
satisfy the same structure relations of the osp(l /2 ,  R) algebra: 

[Dk(KO), D'(K*)1 = fD'(K*) [D"(K+), Dk(K-)l = -2D'(Ko) (37) 

{D'(F*), D"F*H= Dk(K*) {Dk(F+), D'(F-)} = D". (39) 

The ket D-operators also satisfy the similar commutation and anticommutation relations, and 
the bra D-operators commute with the ket D-operators, so that the D-algebra representations 
of the osp(l/Z, R) algebra are differential realizations of the algebra in the cs space. 

On the other hand, the cs projector [ap)(a@l provides a basis in which most physically 
reasonable operators may be expanded. The left D-algebras on the projector lap)(& can 
be found to be 

' 

1 

1 
x [eiesinhr($*+2$) + ~ a c o s h r ] + ~ .  (44) 

The right D-algebras can be obtkined through D'(A) = [D'(A)r. It can be checked that 
these D-algebras on the projector Ia@)(apl satisfy the structure relations of the osp(l/2, R) 
algebra. Therefore, the D-algebra representations on the cs projector also give a differential 
realization of the osp(l/2, R )  algebra. 

In conclusion, we have presented a new kind of css for the Lie superalgebra osp(l/2, R) 
and obtained the D-algebra representations of the superalgebra on the CS space and the cs 
projector space. It has been shown that these osp(lj2, R) css can encompass the Glauber 
Css, su(1, 1) css and squeezed states within a common formalism. We hope these css and 
the D-algebras of the ,asp( 1/2, R) can find some applications in physics and mathematical 
physics. In our further work, we will give path integral formalism of these osp(l/2, R) css 
and some applications of them in quantum physics. 

We would like to thank Professor Mo-Lin Ge and Dr Hong-Chen Fu and Dr Lei Wang 
for useful discussions. The work was supported in part by the National Natural Science 
Foundation of China. 
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